Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.713
Filtrar
1.
Genes (Basel) ; 14(6)2023 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-37372454

RESUMO

Tremendous amount of financial resources and manpower have been invested to understand the function of numerous genes that are deregulated during the carcinogenesis process, which can be targeted for anticancer therapeutic interventions. Death-associated protein kinase 1 (DAPK-1) is one of the genes that have shown potential as biomarkers for cancer treatment. It is a member of the kinase family, which also includes Death-associated protein kinase 2 (DAPK-2), Death-associated protein kinase 3 (DAPK-3), Death-associated protein kinase-related apoptosis-inducing kinase 1 (DRAK-1) and Death-associated protein kinase-related apoptosis-inducing kinase 2 (DRAK-2). DAPK-1 is a tumour-suppressor gene that is hypermethylated in most human cancers. Additionally, DAPK-1 regulates a number of cellular processes, including apoptosis, autophagy and the cell cycle. The molecular basis by which DAPK-1 induces these cell homeostasis-related processes for cancer prevention is less understood; hence, they need to be investigated. The purpose of this review is to discuss the current understanding of the mechanisms of DAPK-1 in cell homeostasis-related processes, especially apoptosis, autophagy and the cell cycle. It also explores how the expression of DAPK-1 affects carcinogenesis. Since deregulation of DAPK-1 is implicated in the pathogenesis of cancer, altering DAPK-1 expression or activity may be a promising therapeutic strategy against cancer.


Assuntos
Proteínas Quinases Dependentes de Cálcio-Calmodulina , Neoplasias , Humanos , Proteínas Quinases Associadas com Morte Celular/genética , Proteínas Quinases Associadas com Morte Celular/metabolismo , Proteínas Quinases Associadas com Morte Celular/uso terapêutico , Proteínas Quinases Dependentes de Cálcio-Calmodulina/genética , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Proteínas Reguladoras de Apoptose/genética , Apoptose/genética , Neoplasias/patologia , Carcinogênese/genética
2.
Dis Model Mech ; 16(4)2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-37083954

RESUMO

Eukaryotic Tribbles proteins are pseudoenzymes that regulate multiple aspects of intracellular signalling. Both Drosophila melanogaster and mammalian members of this family of pseudokinases act as negative regulators of insulin signalling. Mammalian tribbles pseudokinase (TRIB) genes have also been linked to insulin resistance and type 2 diabetes mellitus. Type 2 diabetes mellitus is associated with increased body weight, sleep problems and increased long-term mortality. Here, we investigated how manipulating the expression of Tribbles impacts body weight, sleep and mortality. We showed that the overexpression of Drosophila tribbles (trbl) in the fly fat body reduces both body weight and lifespan in adult flies without affecting food intake. Furthermore, it decreases the levels of Drosophila insulin-like peptide 2 (DILP2; ILP2) and increases night-time sleep. The three genes encoding TRIBs of mammals, TRIB1, TRIB2 and TRIB3, show both common and unique features. As the three human TRIB genes share features with Drosophila trbl, we further explored the links between TRIB genetic variants and both body weight and sleep in the human population. We identified associations between the polymorphisms and expression levels of the pseudokinases and markers of body weight and sleep duration. We conclude that Tribbles pseudokinases are involved in the control of body weight, lifespan and sleep.


Assuntos
Diabetes Mellitus Tipo 2 , Neuropeptídeos , Animais , Humanos , Peso Corporal , Proteínas Quinases Dependentes de Cálcio-Calmodulina/genética , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Proteínas de Ciclo Celular/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Insulina/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Mamíferos/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Duração do Sono , Regulação para Cima/genética
3.
Methods Enzymol ; 667: 79-99, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35525562

RESUMO

Human Tribbles 2 (TRIB2) is a cancer-associated pseudokinase with a broad human protein interactome, including the well-studied AKT, C/EBPα and MAPK modules. Several lines of evidence indicate that human TRIB2 promotes cell survival and drug-resistance in solid tumors and blood cancers and is therefore of interest as a potential therapeutic target, although its physiological functions remain relatively poorly understood. The unique TRIB2 pseudokinase domain lacks the canonical 'DFG' motif, and subsequently possesses very low affinity for ATP in both the presence and absence of metal ions. However, TRIB2 also contains a unique cysteine-rich αC-helix, which interacts with a conserved peptide motif in its own carboxyl-terminal tail. This regulatory flanking region drives regulated interactions with distinct E3 ubiquitin ligases that serve to control the stability and turnover of TRIB2 client proteins. TRIB2 is also a low-affinity target of several known small-molecule protein kinase inhibitors, which were originally identified using purified recombinant TRIB2 proteins and a thermal shift assay. In this chapter, we discuss laboratory-based procedures for purification, stabilization and analysis of human TRIB2, including screening procedures that can be used for the identification of both reversible and covalent small molecule ligands.


Assuntos
Proteínas Quinases Dependentes de Cálcio-Calmodulina , Neoplasias , Proteínas Quinases Dependentes de Cálcio-Calmodulina/genética , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Neoplasias/patologia , Ubiquitina-Proteína Ligases/metabolismo
5.
J Integr Plant Biol ; 64(5): 1087-1101, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35348292

RESUMO

Calcium (Ca2+ )/calmodulin (CaM)-dependent protein kinase (CCaMK) is an important positive regulator of antioxidant defenses and tolerance against oxidative stress. However, the underlying molecular mechanisms are largely unknown. Here, we report that the rice (Oryza sativa) CCaMK (OsDMI3) physically interacts with and phosphorylates OsUXS3, a cytosol-localized UDP-xylose synthase. Genetic and biochemical evidence demonstrated that OsUXS3 acts downstream of OsDMI3 to enhance the oxidative stress tolerance conferred by higher catalase (CAT) activity. Indeed, OsUXS3 interacted with CAT isozyme B (OsCATB), and this interaction was required to increase OsCATB protein abundance under oxidative stress conditions. Furthermore, we showed that OsDMI3 phosphorylates OsUXS3 on residue Ser-245, thereby further promoting the interaction between OsUXS3 and OsCATB. Our results indicate that OsDMI3 promotes the association of OsUXS3 with OsCATB to enhance CAT activity under oxidative stress. These findings reveal OsUXS3 as a direct target of OsDMI3 and demonstrate its involvement in antioxidant defense.


Assuntos
Oryza , Antioxidantes/metabolismo , Proteínas Quinases Dependentes de Cálcio-Calmodulina/genética , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Regulação da Expressão Gênica de Plantas , Oryza/metabolismo , Estresse Oxidativo , Fosforilação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
6.
J Biomed Mater Res B Appl Biomater ; 110(7): 1594-1603, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35106922

RESUMO

Magnesium (Mg) based alloy has been used as a biodegradable implant for fracture repair with considerable efficacy, and it has been proved that magnesium ion (Mg2+ ), one of the degradation products, could stimulate osteogenesis. Here, we investigated the osteogenesis property of magnesium both in vitro and in vivo, and to identify the cellular and molecular mechanisms that mediate these effects. Results showed that magnesium exerts a dose-dependent increase in the proliferation of MC3T3 and MG63 cells, and in the expression of osteopontin (OPN), a promising biomarker of osteogenesis. Subsequently, the protein-protein interaction (PPI) network analysis showed the interactions between calmodulin (CaM) and calmodulin-dependent protein kinase (CaMK) and CREB1. The ratio of p-CaMKIV/CaMKIV and p-CREB1/CREB were increased at protein level in MC3T3 and MG63 cells after treatment with Mg2+ . Dual-luciferase reporter gene assay showed that p-CREB1 could directly bind to OPN promoter and up-regulate the transcription of OPN after nuclear entry. Meanwhile, the expression of OPN and p-CREB1, which increased after Mg2+ treatment, was down-regulated by sh-CaMKIV or sh-CREB1. Moreover, the mineralized deposit and expression of OPN were reduced after treatment with an inhibitor of CaMKIV, KN93. In addition, massive cavities in the cortical bone around the Mg screw were showed in vivo after injection of KN93. These data indicated that the osteogenic effect of Mg is related to the activation OPN through CaM/CaMKIV/CREB1 signaling pathway.


Assuntos
Magnésio , Osteopontina , Proteína Quinase Tipo 4 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 4 Dependente de Cálcio-Calmodulina/metabolismo , Proteínas Quinases Dependentes de Cálcio-Calmodulina/genética , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Magnésio/farmacologia , Osteogênese , Osteopontina/genética , Transdução de Sinais
7.
J Cell Mol Med ; 26(4): 1253-1263, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35044082

RESUMO

Glioblastoma multiforme (GBM) is an aggressive form of brain tumours that remains incurable despite recent advances in clinical treatments. Previous studies have focused on sub-categorizing patient samples based on clustering various transcriptomic data. While functional genomics data are rapidly accumulating, there exist opportunities to leverage these data to decipher glioma-associated biomarkers. We sought to implement a systematic approach to integrating data from high throughput CRISPR-Cas9 screening studies with machine learning algorithms to infer a glioma functional network. We demonstrated the network significantly enriched various biological pathways and may play roles in glioma tumorigenesis. From densely connected glioma functional modules, we further predicted 12 potential Wnt/ß-catenin signalling pathway targeted genes, including AARSD1, HOXB5, ITGA6, LRRC71, MED19, MED24, METTL11B, SMARCB1, SMARCE1, TAF6L, TENT5A and ZNF281. Cox regression modelling with these targets was significantly associated with glioma overall survival prognosis. Additionally, TRIB2 was identified as a glioma neoplastic cell marker in single-cell RNA-seq of GBM samples. This work establishes novel strategies for constructing functional networks to identify glioma biomarkers for the development of diagnosis and treatment in clinical practice.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Neoplasias Encefálicas/patologia , Proteínas Quinases Dependentes de Cálcio-Calmodulina/genética , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas de Ligação a DNA/genética , Regulação Neoplásica da Expressão Gênica , Glioblastoma/patologia , Glioma/genética , Humanos , Aprendizado de Máquina , Complexo Mediador/genética , Proteínas Repressoras/genética
8.
Int J Biol Markers ; 37(1): 90-101, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34870494

RESUMO

BACKGROUND: VEGFA is one of the most important regulators of angiogenesis and plays a crucial role in cancer angiogenesis and progression. Recent studies have highlighted a relationship between VEGFA expression and renal cell carcinoma occurrence. However, the expression level, gene regulation network, prognostic value, and target prediction of VEGFA in renal cell carcinoma remain unclear. Therefore, system analysis of the expression, gene regulation network, prognostic value, and target prediction of VEGFA in patients with renal cell carcinoma is of great theoretical significance as there is a clinical demand for the discovery of new renal cell carcinoma treatment targets and strategies to further improve renal cell carcinoma treatment efficacy. METHODS: This study used multiple free online databases, including cBioPortal, TRRUST, GeneMANIA, GEPIA, Metascape, UALCAN, LinkedOmics, Metascape, and TIMER for the abovementioned analysis. RESULTS: VEGFA was upregulated in patients with kidney renal clear cell carcinoma (KIRC) and kidney chromophobe (KICH), and downregulated in patients with kidney renal papillary cell carcinoma (KIRP). Moreover, genetic alterations of VEGFA were found in patients with renal cell carcinoma as follows: 4% (KIRC), 8% (KICH), and 4% (KIRP). The promoter methylation of VEGFA was lower and higher in patients with clinical stages of KIRC and stage 1 KIRP, respectively. VEGFA expression significantly correlated with KIRC and KIRP pathological stages. Furthermore, patients with KICH and KIRP having low VEGFA expression levels had a longer survival than those having high VEGFA expression levels. VEGFA and its neighboring genes functioned in the regulation of protein methylation and glycosylation, as well as muscle fiber growth and differentiation in patients with renal cell carcinoma. Gene Ontology enrichment analysis revealed that the functions of VEGFA and its neighboring genes in patients with renal cell carcinoma are mainly related to cell adhesion molecule binding, catalytic activity, acting on RNA, ATPase activity, actin filament binding, protease binding, transcription coactivator activity, cysteine-type peptidase activity, and calmodulin binding. Transcription factor targets of VEGFA and its neighboring genes in patients with renal cell carcinoma were found: HIF1A, TFAP2A, and ESR1 in KIRC; STAT3, NFKB1, and HIPK2 in KICH; and FOXO3, TFAP2A, and ETS1 in KIRP. We further explored the VEGFA-associated kinase (ATM in KICH as well as CDK1 and AURKB in KIRP) and VEGFA-associated microRNA (miRNA) targets (MIR-21 in KICH as well as MIR-213, MIR-383, and MIR-492 in KIRP). Furthermore, the following genes had the strongest correlation with VEGFA expression in patients with renal cell carcinoma: NOTCH4, GPR4, and TRIB2 in KIRC; CKMT2, RRAGD, and PPARGC1A in KICH; and FLT1, C6orf223, and ESM1 in KIRP. VEGFA expression in patients with renal cell carcinoma was positively associated with immune cell infiltration, including CD8+T cells, CD4+T cells, macrophages, neutrophils, and dendritic cells. CONCLUSIONS: This study revealed VEGFA expression and potential gene regulatory network in patients with renal cell carcinoma, thereby laying a foundation for further research on the role of VEGFA in renal cell carcinoma occurrence. Moreover, the study provides new renal cell carcinoma therapeutic targets and prognostic biomarkers as a reference for fundamental and clinical research.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Proteínas Quinases Dependentes de Cálcio-Calmodulina/genética , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Carcinoma de Células Renais/patologia , Proteínas de Transporte/genética , Creatina Quinase Mitocondrial/genética , Creatina Quinase Mitocondrial/metabolismo , Redes Reguladoras de Genes , Humanos , Neoplasias Renais/patologia , MicroRNAs , Prognóstico , Proteínas Serina-Treonina Quinases , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
9.
mBio ; 12(6): e0257521, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34724830

RESUMO

Gametocytes of the malaria parasite Plasmodium are taken up by the mosquito vector with an infectious blood meal, representing a critical stage for parasite transmission. Calcium-independent protein kinases (CDPKs) play key roles in calcium-mediated signaling across the complex life cycle of the parasite. We sought to understand their role in human parasite transmission from the host to the mosquito vector and thus investigated the role of the human-infective parasite Plasmodium falciparum CDPK4 in the parasite life cycle. P. falciparum cdpk4- parasites created by targeted gene deletion showed no effect in blood stage development or gametocyte development. However, cdpk4- parasites showed a severe defect in male gametogenesis and the emergence of flagellated male gametes. To understand the molecular underpinnings of this defect, we performed mass spectrometry-based phosphoproteomic analyses of wild-type and Plasmodium falciparum cdpk4- late gametocyte stages to identify key CDPK4-mediated phosphorylation events that may be important for the regulation of male gametogenesis. We further employed in vitro assays to identify these putative substrates of Plasmodium falciparum CDPK4. This indicated that CDPK4 regulates male gametogenesis by directly or indirectly controlling key essential events, such as DNA replication, mRNA translation, and cell motility. Taken together, our work demonstrates that PfCDPK4 is a central kinase that regulates exflagellation and thereby is critical for parasite transmission to the mosquito vector. IMPORTANCE Transmission of the malaria parasite to the mosquito vector is critical for the completion of the sexual stage of the parasite life cycle and is dependent on the release of male gametes from the gametocyte body inside the mosquito midgut. In the present study, we demonstrate that PfCDPK4 is critical for male gametogenesis and is involved in phosphorylation of proteins essential for male gamete emergence. Targeting PfCDPK4 and its substrates may provide insights into achieving effective malaria transmission-blocking strategies.


Assuntos
Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Gametogênese/fisiologia , Mosquitos Vetores , Plasmodium falciparum/enzimologia , Plasmodium falciparum/metabolismo , Animais , Sinalização do Cálcio , Proteínas Quinases Dependentes de Cálcio-Calmodulina/genética , Culicidae , Gametogênese/genética , Células Germinativas/metabolismo , Estágios do Ciclo de Vida , Malária Falciparum/parasitologia , Malária Falciparum/transmissão , Masculino , Fosforilação , Plasmodium falciparum/genética , Proteínas de Protozoários/genética
10.
Reprod Biol ; 21(4): 100569, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34808454

RESUMO

The successful implantation of the embryo into a receptive endometrium is essential for the establishment of a viable pregnancy while recurrent implantation failure (RIF) is a real challenge in assisted reproduction. The maternal innate immune system, specifically the Toll-like receptors (TLRs), are involved in maintaining immunity in the female reproductive tract (FRT) required for fertility. In this study, we aimed to investigate the importance of innate immunity-related gene expression in the regulation of human fertility and as a prediction of potential outcome of in vitro fertilization - embryo transfer (IVF-ET), thus, we assessed the gene expression levels of TLR signalling molecules using quantitative real-time PCR between endometrial biopsies of healthy fertile women, and the patients experiencing RIF. Interestingly, our results showed that, TRIB2 and TLR9 genes were differentially expressed between the endometrial biopsies of healthy women and those with RIF. However, comparing expression levels of same genes between pre-receptive and receptive healthy endometrial biopsies showed different genes (ICAM1, NFKBIA, VCAM1, LIF, VEGFB, TLR5) had significantly altered expression, suggesting their involvement in endometrial receptivity. Thus, further investigations will enable us to better understand the role of these genes in the biology of FRT and as a possible target for the improvement of infertility treatments and/or development of non-hormonal contraception.


Assuntos
Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Imunidade Inata/genética , Infertilidade Feminina/genética , Receptor Toll-Like 9/metabolismo , Adulto , Biomarcadores , Biópsia , Proteínas Quinases Dependentes de Cálcio-Calmodulina/genética , Implantação do Embrião , Endométrio/metabolismo , Endométrio/patologia , Feminino , Regulação da Expressão Gênica , Humanos , Receptor Toll-Like 9/genética , Transcriptoma , Regulação para Cima
12.
Clin Transl Med ; 11(9): e545, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34586732

RESUMO

BACKGROUND: Esophageal squamous cell carcinoma (ESCC) is a highly aggressive and treatment-resistant tumor. The biological implications and molecular mechanism of cancer stem-like cells (CSCs) in ESCC, which contribute to therapeutic resistance such as radioresistance, remain elusive. METHODS: Quantitative real-time polymerase chain reaction, western blotting, immunohistochemistry, and in situ hybridization assays were used to detect methyltransferase-like 14 miR-99a-5p tribble 2 (METTL14/miR-99a-5p/TRIB2) expression in ESCC. The biological functions of METTL14/miR-99a-5p/TRIB2 were demonstrated in vitro and in vivo. Mass spectrum analysis was used to identify the downstream proteins regulated by TRIB2. Chromatin immunoprecipitation (IP), IP, N6 -methyladenosine (m6 A)-RNA IP, luciferase reporter, and ubiquitination assays were employed to explore the molecular mechanisms underlying this feedback circuit and its downstream pathways. RESULTS: We found that miR-99a-5p was significantly decreased in ESCC. miR-99a-5p inhibited CSCs persistence and the radioresistance of ESCC cells, and miR-99a-5p downregulation predicted an unfavorable prognosis of ESCC patients. Mechanically, we unveiled a METTL14-miR-99a-5p-TRIB2 positive feedback loop that enhances CSC properties and radioresistance of ESCC cells. METTL14, an m6 A RNA methyltransferase downregulated in ESCC, suppresses TRIB2 expression via miR-99a-5p-mediated degradation of TRIB2 mRNA by targeting its 3' untranslated region, whereas TRIB2 induces ubiquitin-mediated proteasomal degradation of METTL14 in a COP1-dependent manner. METTL14 upregulates miR-99a-5p by modulating m6 A-mediated, DiGeorge critical region 8-dependent pri-mir-99a processing. Hyperactivation of TRIB2 resulting from this positive circuit was closely correlated with radioresistance and CSC characteristics. Furthermore, TRIB2 activates HDAC2 and subsequently induces p21 epigenetic repression through Akt/mTOR/S6K1 signaling pathway activation. Pharmacologic inhibition of HDAC2 effectively attenuates the TRIB2-mediated effect both in vitro and in patient-derived xenograft models. CONCLUSION: Our data highlight the presence of the METTL14/miR-99a-5p/TRIB2 axis and show that it is positively associated with CSC characteristics and radioresistance of ESCC, suggesting potential therapeutic targets for ESCC treatment.


Assuntos
Epigênese Genética/genética , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Células-Tronco Neoplásicas/metabolismo , Tolerância a Radiação/genética , Animais , Proteínas Quinases Dependentes de Cálcio-Calmodulina/genética , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/metabolismo , Feminino , Histona Desacetilase 2/genética , Histona Desacetilase 2/metabolismo , Humanos , Metiltransferases/genética , Metiltransferases/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , MicroRNAs/genética , MicroRNAs/metabolismo
13.
Diagn Pathol ; 16(1): 47, 2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34030715

RESUMO

BACKGROUND: Colorectal cancer (CRC) is one of the third normal malignancy worldwide. Taurine-upregulated gene 1 (TUG1), a member of long noncoding RNAs (lncRNAs), has been reported to be involved in various cancers. However, the mechanism underlying TUG1 in the progression of CRC remains unclear. METHODS: The expression of TUG1, microRNA-542-3p (miR-542-3p), and tribbles homolog 2 (TRIB2) in CRC tissues and cells (LoVo and HCT116) were detected by quantitative real-time PCR (qRT-PCR). Methyl thiazolyl tetrazolium (MTT), transwell and flow cytometry assays were employed to evaluate the effects of TUG1 in CRC cells. The interaction between miR-542-3p and TUG1 or TRIB2 were verified by dual-luciferase reporter assay. A xenograft tumor model in nude mice was established to investigate the biological role of TUG1 in CRC in vivo. RESULTS: TUG1 was increased in CRC tissues and cells (LoVo and HCT116) in contrast with adjacent normal tissues and normal intestinal mucous cells (CCC-HIE-2). Downregulation of TUG1 or TRIB2 suppressed the proliferation, migration, invasion, and induced apoptosis in CRC cells. And knockdown of TUG1 repressed tumor growth in vivo. Besides, overexpression of TRIB2 reversed the effects of TUG1 depletion on the progression of CRC. Meanwhile, TUG1 interacted with miR-542-3p and TRIB2 was a target of miR-542-3p. Furthermore, miR-542-3p knockdown or TRIB2 overexpression partly reversed the suppression effect of TUG1 depletion on the Wnt/ß-catenin pathway. CONCLUSIONS: TUG1 served as a tumor promoter, impeded the progression of CRC by miR-542-3p/TRIB2 axis to inactivate of Wnt/ß-catenin pathway, which providing a novel target for CRC treatment.


Assuntos
Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Neoplasias Colorretais/metabolismo , MicroRNAs/metabolismo , RNA Longo não Codificante/metabolismo , Via de Sinalização Wnt , Animais , Apoptose , Proteínas Quinases Dependentes de Cálcio-Calmodulina/genética , Movimento Celular , Proliferação de Células , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Humanos , Masculino , Camundongos Nus , MicroRNAs/genética , Pessoa de Meia-Idade , Invasividade Neoplásica , RNA Longo não Codificante/genética , Carga Tumoral
14.
Plant Physiol ; 185(3): 1131-1147, 2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33793909

RESUMO

Rhizobial infection of legume roots during the development of nitrogen-fixing root nodules can occur intracellularly, through plant-derived infection threads traversing cells, or intercellularly, via bacterial entry between epidermal plant cells. Although it is estimated that around 25% of all legume genera are intercellularly infected, the pathways and mechanisms supporting this process have remained virtually unexplored due to a lack of genetically amenable legumes that exhibit this form of infection. In this study, we report that the model legume Lotus japonicus is infected intercellularly by the IRBG74 strain, recently proposed to belong to the Agrobacterium clade of the Rhizobiaceae. We demonstrate that the resources available for L. japonicus enable insight into the genetic requirements and fine-tuning of the pathway governing intercellular infection in this species. Inoculation of L. japonicus mutants shows that Ethylene-responsive factor required for nodulation 1 (Ern1) and Leu-rich Repeat Receptor-Like Kinase (RinRK1) are dispensable for intercellular infection in contrast to intracellular infection. Other symbiotic genes, including nod factor receptor 5 (NFR5), symbiosis receptor-like kinase (SymRK), Ca2+/calmodulin dependent kinase (CCaMK), exopolysaccharide receptor 3 (Epr3), Cyclops, nodule inception (Nin), nodulation signaling pathway 1 (Nsp1), nodulation signaling pathway 2 (Nsp2), cystathionine-ß-synthase (Cbs), and Vapyrin are equally important for both entry modes. Comparative RNAseq analysis of roots inoculated with IRBG74 revealed a distinctive transcriptome response compared with intracellular colonization. In particular, several cytokinin-related genes were differentially regulated. Corroborating this observation, cyp735A and ipt4 cytokinin biosynthesis mutants were significantly affected in their nodulation with IRBG74, whereas lhk1 cytokinin receptor mutants formed no nodules. These results indicate a differential requirement for cytokinin signaling during intercellular rhizobial entry and highlight distinct modalities of inter- and intracellular infection mechanisms in L. japonicus.


Assuntos
Lotus/metabolismo , Lotus/microbiologia , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Rhizobium/patogenicidade , Nódulos Radiculares de Plantas/metabolismo , Nódulos Radiculares de Plantas/microbiologia , Proteínas Quinases Dependentes de Cálcio-Calmodulina/genética , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
15.
Cancer Chemother Pharmacol ; 88(1): 155-164, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33860836

RESUMO

PURPOSE: The BRAFV600E mutation is an oncogenic driver associated with aggressive tumor behaviors and increased mortality among patients with papillary thyroid cancer (PTC). Although the BRAF inhibitor vemurafenib gave promising results in BRAFV600E-mutant PTC, resistance development remains a major clinical challenge. This study aimed to explore the mechanisms underlying drug resistance in PTC. METHODS: Two vemurafenib-resistant PTC cell lines (KTC1 and BCPAP) were established by continuous treatment with vemurafenib for 5 months. The knockdown and upregulation of Tribbles homolog 2 (TRIB2) in PTC cells were achieved by the transfection with short hairpin RNA against TRIB2 or recombinant lentiviral vector carrying TRIB2, respectively. The ß-catenin inhibitor, ICG-001, was used for the inhibition of the Wnt/ß-catenin signaling in PTC cells. RESULTS: Vemurafenib-resistant PTC cells showed higher TRIB2 expression, upregulated ERK and AKT activation, enhanced invasive capacity, and increased epithelial-mesenchymal transition compared to the drug-sensitive groups. TRIB2 knockdown repressed the activation of ERK and AKT, inhibited invasion and EMT, and induced apoptosis of PTC cells. TRIB2 deficiency also enhanced the sensitivity of both PTC cells to vemurafenib. Vemurafenib-resistant PTC cells showed elevated expression of ß-catenin in both cytoplasm and nucleus. The pre-incubation of cells with ß-catenin inhibitor significantly inhibited TRIB2 expression, suppressed EMT, and repressed the activation of ERK and AKT in vemurafenib-resistant cells. CONCLUSION: Our study showed that the upregulation of TRIB2 by the Wnt/ß-catenin activation confers resistance to vemurafenib in PTC with BRAFV600 mutation. These findings support the potential use of TRIB2 as a therapeutic target for resistant PTC.


Assuntos
Proteínas Quinases Dependentes de Cálcio-Calmodulina/genética , Resistencia a Medicamentos Antineoplásicos/genética , Proteínas Proto-Oncogênicas B-raf/genética , Câncer Papilífero da Tireoide/genética , Regulação para Cima/genética , Via de Sinalização Wnt/genética , beta Catenina/genética , Carcinoma Papilar/tratamento farmacológico , Carcinoma Papilar/genética , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/genética , Feminino , Humanos , Masculino , Inibidores de Proteínas Quinases/farmacologia , Câncer Papilífero da Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/genética , Vemurafenib/farmacologia
16.
Int J Mol Sci ; 22(4)2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33562460

RESUMO

Post-translational regulations of Shaker-like voltage-gated K+ channels were reported to be essential for rapid responses to environmental stresses in plants. In particular, it has been shown that calcium-dependent protein kinases (CPKs) regulate Shaker channels in plants. Here, the focus was on KAT2, a Shaker channel cloned in the model plant Arabidopsis thaliana, where is it expressed namely in the vascular tissues of leaves. After co-expression of KAT2 with AtCPK6 in Xenopuslaevis oocytes, voltage-clamp recordings demonstrated that AtCPK6 stimulates the activity of KAT2 in a calcium-dependent manner. A physical interaction between these two proteins has also been shown by Förster resonance energy transfer by fluorescence lifetime imaging (FRET-FLIM). Peptide array assays support that AtCPK6 phosphorylates KAT2 at several positions, also in a calcium-dependent manner. Finally, K+ fluorescence imaging in planta suggests that K+ distribution is impaired in kat2 knock-out mutant leaves. We propose that the AtCPK6/KAT2 couple plays a role in the homeostasis of K+ distribution in leaves.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Animais , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Sinalização do Cálcio , Proteínas Quinases Dependentes de Cálcio-Calmodulina/genética , Feminino , Transferência Ressonante de Energia de Fluorescência , Técnicas de Inativação de Genes , Técnicas In Vitro , Modelos Moleculares , Oócitos/metabolismo , Imagem Óptica , Técnicas de Patch-Clamp , Fosforilação , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas , Potássio/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/deficiência , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Xenopus laevis
17.
Nat Commun ; 11(1): 6234, 2020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-33277490

RESUMO

Pattern-triggered immunity and effector-triggered immunity are two primary forms of innate immunity in land plants. The molecular components and connecting nodes of pattern-triggered immunity and effector-triggered immunity are not fully understood. Here, we report that the Arabidopsis calcium-dependent protein kinase CPK3 is a key regulator of both pattern-triggered immunity and effector-triggered immunity. In vitro and in vivo phosphorylation assays, coupled with genetic and cell biology-based analyses, show that actin-depolymerization factor 4 (ADF4) is a physiological substrate of CPK3, and that phosphorylation of ADF4 by CPK3 governs actin cytoskeletal organization associated with pattern-triggered immunity. CPK3 regulates stomatal closure induced by flg22 and is required for resistance to Pst DC3000. Our data further demonstrates that CPK3 is required for resistance to Pst DC3000 carrying the effector AvrPphB. These results suggest that CPK3 is a missing link between cytoskeleton organization, pattern-triggered immunity and effector-triggered immunity.


Assuntos
Citoesqueleto de Actina/metabolismo , Fatores de Despolimerização de Actina/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Fatores de Despolimerização de Actina/genética , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Proteínas Quinases Dependentes de Cálcio-Calmodulina/genética , Microscopia Confocal , Mutação , Doenças das Plantas/microbiologia , Imunidade Vegetal/genética , Plantas Geneticamente Modificadas , Pseudomonas syringae/fisiologia , Homologia de Sequência de Aminoácidos
18.
Sci Rep ; 10(1): 9733, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32546714

RESUMO

Dendrobium officinale Kimura et Migo is a famous precious medicinal plant in China. Seed and seedling were cultivated with the mycorrhizal fungus Sebacina sp. CCaMK was initially cloned from D. officinale based on a SSH cDNA library of symbiotically germinated seeds with Sebacina sp. Phylogenetic analysis was performed among DoCCaMK and other CCaMKs. The particle bombardment technique was used to visualize DoCCaMK-GFP. qRT-PCR and western blot analysis were conducted to determine the tissue expression patterns of DoCCaMK with (SGS) and without (UGS) Sebacina sp. Furthermore, the effect of KN-93 on CCaMK expression was also examined. Using NMT the net Ca2+ fluxes and the CCaMK concentration were measured during D. officinale seed germination. DoCCaMK had the highest homology with Lilium longiflorum CCaMK. The DoCCaMK-GFP protein localized in the nucleus and cell membrane. CCaMK expression was significantly upregulated after symbiosis with Sebacina sp. KN-93 could be used as an inhibitor of CCaMK to inhibit D. officinale seed germination. Ca2+ influx and the concentration of the CCaMK in the SGS group was significantly more than that of the UGS group. The characterization of CCaMK provides certain genetic evidence for the involvement of this gene during seed germination and mycorrhizal cultivation in D. officinale.


Assuntos
Basidiomycota/genética , Proteínas Quinases Dependentes de Cálcio-Calmodulina/genética , Dendrobium/genética , Sequência de Aminoácidos , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , China , Clonagem Molecular/métodos , DNA Complementar/genética , Regulação da Expressão Gênica de Plantas/genética , Biblioteca Gênica , Germinação/genética , Micorrizas/genética , Filogenia , Proteínas de Plantas/genética , Plântula/genética , Sementes/genética , Alinhamento de Sequência , Simbiose/genética
19.
Biochem Biophys Res Commun ; 528(4): 644-649, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32513531

RESUMO

Long noncoding RNAs (lncRNAs) are crucial regulatory factors in the development and progression of human malignancies. The purpose of this study was to investigate the potential mechanism of ZEB1-AS1 in pancreatic cancer (PC). The expression of ZEB1-AS1 in PC tissues and cells was assessed by RT-qPCR. The overall survival rate was evaluated using the Kaplan-Meier analysis. The association between ZEB1-AS1 and miR-505 was verified by dual-luciferase reporter assay. CCK-8 assay was employed to analyze PC cell viability. Transwell assay was employed to detect the migration and invasion of PC cells. Our results revealed that ZEB1-AS1 expression was significantly upregulated in PC tissues and cells, and the high expression of ZEB1-AS1 indicated the low overall survival rate in PC patients. Loss-of-function and gain-of-function assays indicated that knockdown of ZEB1-AS1 inhibited the cell viability, migration and invasion of PC cells, while overexpression of ZEB1-AS1 promoted PC cell progression. Moreover, ZEB1-AS1 upregulated TRIB2 expression via sponging miR-505. Finally, rescue assays demonstrated that TRIB2 overexpression partially abrogated the inhibitory effect of ZEB1-AS1 knockdown on the viability, migration and invasion of PC cells. These results confirmed that ZEB1-AS1 promoted the tumorigenesis of PC through the miR-505/TRIB2 axis, which indicated that ZEB1-AS1 might function as a biomarker for PC treatment and provide a new therapeutic direction in PC.


Assuntos
Proteínas Quinases Dependentes de Cálcio-Calmodulina/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Neoplasias Pancreáticas/genética , RNA Longo não Codificante/genética , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Progressão da Doença , Humanos , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Neoplasias Pancreáticas/patologia , Regulação para Cima
20.
Appl Environ Microbiol ; 86(11)2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32245757

RESUMO

In Candida glabrata, the transcription factor CgRds2 has been previously characterized as a regulator of glycerophospholipid metabolism, playing a crucial role in the response to osmotic stress. Here, we report that CgRds2 is also involved in the response to pH 2.0 stress. At pH 2.0, the deletion of CgRDS2 led to reduced cell growth and survival, by 33% and 57%, respectively, compared with those of the wild-type strain. These adverse phenotypes resulted from the downregulation of genes related to energy metabolism in the Cgrds2Δ strain at pH 2.0, which led to a 34% reduction of the intracellular ATP content and a 24% decrease in membrane permeability. In contrast, the overexpression of CgRDS2 rescued the growth defect of the Cgrds2Δ strain and increased cell survival at pH 2.0 by 17% compared with that of the wild-type strain, and this effect was accompanied by significant increases in ATP content and membrane permeability, by 42% and 19%, respectively. Furthermore, we found that the calcium/calmodulin-dependent protein kinase (CaMK) CgCmk1 physically interacts with the PAS domain of CgRds2, and CgCmk1 is required for CgRds2 activation and translocation from the cytoplasm to the nucleus under pH 2.0 stress. Moreover, CgCmk1 is critical for CgRds2 function in resistance to pH 2.0 stress, because cells of the Cgrds2-pas strain with a disrupted CgCmk1-CgRds2 interaction exhibited impaired energy metabolism and membrane permeability at pH 2.0. Therefore, our results indicate that CgCmk1 positively regulates CgRds2 and suggest that they promote resistance to low-pH stress by enhancing energy metabolism and membrane permeability in C. glabrataIMPORTANCE An acidic environment is the main problem in the production of organic acids in C. glabrata The present study reports that the calcium/calmodulin-dependent protein kinase CgCmk1 positively regulates CgRds2 to increase intracellular ATP content, membrane permeability, and resistance to low-pH stress. Hence, the transcription factor CgRds2 may be a potential target for improving the acid stress tolerance of C. glabrata during the fermentation of organic acids. The present study also establishes a new link between the calcium signaling pathway and energy metabolism.


Assuntos
Proteínas Quinases Dependentes de Cálcio-Calmodulina/genética , Candida glabrata/fisiologia , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Membrana Celular/fisiologia , Proteínas Fúngicas/metabolismo , Concentração de Íons de Hidrogênio , Estresse Fisiológico/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...